Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

$N-[($ Methylsulfanyl)methyl]benzamide

Muhammad Riaz Khan, ${ }^{\text {a }}$ Azim Khan, ${ }^{\text {a }}$ M. Nawaz Tahir, ${ }^{\text {b }}$ * Muhammad Adeel ${ }^{\mathrm{a}}$ and Saeed Ahmad ${ }^{\mathrm{a}}$
${ }^{\text {a }}$ Department of Chemistry, Gomal University, Dera Ismail Khan, K.P.K., Pakistan, and ${ }^{\mathbf{b}}$ University of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 1 February 2012; accepted 2 February 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.041 ; w R$ factor $=0.116$; data-to-parameter ratio $=21.6$.

In the title compound, $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NOS}$, the phenyl ring and formamide unit make a dihedral angle of $23.93(14)^{\circ}$, whereas the (methylsulfanyl)methyl group is oriented at a dihedral angle of $61.31(8)^{\circ}$ with respect to the phenyl ring. There are intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming $C(4)$ chains along the [010] direction. These polymeric chains are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds to form polymeric sheets in the (110) plane.

Related literature

For crystal structures containing the 1-(methylsulfanyl)methanamine grouping, see: Siddiqui et al. (2008); Noroozi Pesyan et al. (2009). For graph-set notation, see: Bernstein et al. (1995).

Experimental

Crystal data

$$
\begin{array}{ll}
\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NOS} & V=1916.67(14) \AA^{3} \\
M_{r}=181.25 & Z=8 \\
\text { Orthorhombic, Pbca } & \text { Mo } K \alpha \text { radiation } \\
a=9.7841(4) \AA & \mu=0.29 \mathrm{~mm}^{-1} \\
b=9.2116(4) \AA & T=296 \mathrm{~K} \\
c=21.2663(8) \AA & 0.26 \times 0.20 \times 0.18 \mathrm{~mm}
\end{array}
$$

Data collection

Bruker Kappa APEXII CCD diffractometer
Absorption correction: multi-scan (SADABS; Bruker, 2005)
$T_{\text {min }}=0.932, T_{\text {max }}=0.950$

9379 measured reflections 2371 independent reflections 1722 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.022$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041 \quad 110$ parameters
$w R\left(F^{2}\right)=0.116 \quad$ H-atom parameters constrained
$S=1.07$
$\Delta \rho_{\max }=0.18$ e \AA^{-3}
2371 reflections

Table 1
Hydrogen-bond geometry ($\left({ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\mathrm{i}}$	0.86	2.02	$2.8438(17)$	160
$\mathrm{C} 8-\mathrm{H} 8 B \cdots \mathrm{O}^{\mathrm{ii}}$	0.97	2.53	$3.434(2)$	154
Symmetry codes: (i) $-x+\frac{1}{2}, y+\frac{1}{2}, z ;$ (ii) $x+\frac{1}{2},-y+\frac{1}{2},-z$				

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2467).

References

Bernstein, J., Davis, R. E., Shimoni, L. \& Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Noroozi Pesyan, N., Omidkhah, N., Maghsoodi, M. \& Patrick, B. O. (2009). Acta Cryst. E65, 0655.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Hussain, R. A. \& Parvez, M. (2008). Acta Cryst. E64, o1897.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supplementary materials

N-[(Methylsulfanyl)methyl]benzamide

Muhammad Riaz Khan, Azim Khan, M. Nawaz Tahir, Muhammad Adeel and Saeed Ahmad

Comment

The title compound (Fig. 1) was prepared in an attempt to synthesize a different compound from benzamide and phthalic anhydride in dimethyl sulphoxide.

The crystal structures of 2-((methylsulfanyl)methyl)-1,2-benzisothiazol-3(2H)-one 1,1-dioxide (Siddiqui et al., 2008) and 5-(2,6-dimethoxyphenoxy)-2-methylsulfanylmethyl-2H-tetrazole (Noroozi Pesyan et al., 2009) have been published; these contain the 1-(methylsulfanyl)methanamine grouping.
Let A, B, C denote the planes defined by the phenyl ring (C1-C6), the formamide unit (O1/C7/N1) and the (methylsulfanyl)methane grouping (C8/S1/C9), respectively. The dihedral angles between $\mathrm{A} / \mathrm{B}, \mathrm{A} / \mathrm{C}$ and B / C are 23.93 (14) ${ }^{\circ}$, $61.31(8)^{\circ}$ and $67.92(13)^{\circ}$, respectively.

There are intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1, Fig. 2), forming $\mathrm{C}(4)$ chains (Bernstein et al., 1995) along the [010] direction. These polymeric chains are linked by $\mathrm{C}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds (Table 1, Fig. 2) to form polymeric sheets in the (110) plane.

Experimental

The title compound was prepared by adding a solution of benzamide ($0.1 \mathrm{~g}, 0.078 \mathrm{mmol}$) in 3 ml of dimethyl sulphoxide (DMSO) to a solution of phthalic anhydride $(0.1 \mathrm{~g}, 0.078 \mathrm{mmol})$ in DMSO $(3 \mathrm{ml})$. The reaction mixture was heated to 353 K for 6 h . The organic and aqueous layers were separated and the latter was extracted with chloroform ($3 \times 15 \mathrm{ml}$). The organic layer was concentrated in vacuo and the residue was purified by chromatography (silica gel, EtOAc/hexane= $1: 4$). The title compound was obtained as a colorless crystalline solid. Yield $=0.14 \mathrm{~g}, 70 \%, \mathrm{~m} . \mathrm{p}=365 \mathrm{~K}$. Crystallization from a saturated chloroform solution at ambient temperature gave colourless prisms.

Refinement

The H -atoms were positioned geometrically $\left(\mathrm{N}-\mathrm{H}=0.86 \AA, \mathrm{C}-\mathrm{H}=0.93-0.97 \AA\right.$) and refined as riding with $U_{\text {iso }}(\mathrm{H})=$ $x U_{\mathrm{eq}}(\mathrm{C}, \mathrm{N})$, where $x=1.5$ for methyl groups and $x=1.2$ for all other H-atoms.

Computing details

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT (Bruker, 2007); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON (Spek, 2009).

supplementary materials

Figure 1

View of the title compound, with displacement ellipsoids drawn at the 50% probability level. H -atoms are shown as small circles of arbitrary radius.

Figure 2
Packing diagram of the title compound (PLATON: Spek, 2009) showing that molecules form one dimensional polymeric chains along [010] and are interlinked. H atoms not involved in hydrogen bonding have been omitted for clarity.

$N-[($ methylsulfanyl)methyl]benzamide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{NOS}$
$M_{r}=181.25$
Orthorhombic, Pbca
Hall symbol: -P 2ac 2ab
$a=9.7841$ (4) Å
$b=9.2116(4) \AA$
$c=21.2663$ (8) \AA
$V=1916.67(14) \AA^{3}$
$Z=8$
$F(000)=768$
$D_{\mathrm{x}}=1.256 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 1722 reflections
$\theta=1.9-28.3^{\circ}$
$\mu=0.29 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Prism, colorless
$0.26 \times 0.20 \times 0.18 \mathrm{~mm}$

Data collection

Bruker Kappa APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 7.50 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2005)
$T_{\min }=0.932, T_{\max }=0.950$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.116$
$S=1.07$
2371 reflections
110 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

> 9379 measured reflections
> 2371 independent reflections
> 1722 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.022$
> $\theta_{\max }=28.3^{\circ}, \theta_{\min }=1.9^{\circ}$
> $h=-12 \rightarrow 12$
> $k=-12 \rightarrow 12$
> $l=-27 \rightarrow 28$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0531 P)^{2}+0.2845 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.18$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.26$ e \AA^{-3}

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
S1	$0.20155(6)$	$0.43391(6)$	$-0.09248(2)$	$0.0717(2)$
O1	$0.14747(12)$	$0.17375(11)$	$0.05060(5)$	$0.0537(4)$
N1	$0.25653(14)$	$0.38548(15)$	$0.03218(5)$	$0.0493(4)$
C1	$0.15800(14)$	$0.34302(14)$	$0.13470(7)$	$0.0427(4)$
C2	$0.04865(18)$	$0.28086(18)$	$0.16623(8)$	$0.0562(5)$
C3	$0.0203(2)$	$0.3207(2)$	$0.22745(9)$	$0.0710(7)$
C4	$0.1003(2)$	$0.4214(2)$	$0.25775(9)$	$0.0709(7)$
C5	$0.2082(2)$	$0.4838(2)$	$0.22691(8)$	$0.0648(6)$
C6	$0.23778(18)$	$0.44502(17)$	$0.16551(7)$	$0.0525(5)$
C7	$0.18659(14)$	$0.29393(15)$	$0.06896(7)$	$0.0424(4)$
C8	$0.29981(18)$	$0.3490(2)$	$-0.03071(7)$	$0.0559(6)$
C9	$0.0467(2)$	$0.3318(3)$	$-0.08796(11)$	$0.0905(9)$
H1	0.27659	0.46996	0.04670	0.0592^{*}
H2	-0.00569	0.21226	0.14612	0.0674^{*}
H3	-0.05341	0.27902	0.24832	0.0852^{*}
H4	0.08116	0.44708	0.29912	0.0851^{*}
H5	0.26188	0.55253	0.24731	0.0778^{*}

H6	0.31140	0.48753	0.14487	0.0630^{*}
H8A	0.29434	0.24449	-0.03582	0.0670^{*}
H8B	0.39487	0.37666	-0.03557	0.0670^{*}
H9A	0.00311	0.34980	-0.04829	0.1358^{*}
H9B	0.06706	0.23019	-0.09169	0.1358^{*}
H9C	-0.01321	0.36045	-0.12147	0.1358^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S1	$0.0957(4)$	$0.0699(4)$	$0.0496(3)$	$-0.0010(3)$	$-0.0003(2)$	$0.0110(2)$
O1	$0.0662(7)$	$0.0395(6)$	$0.0553(6)$	$-0.0005(5)$	$-0.0022(5)$	$-0.0059(5)$
N1	$0.0605(8)$	$0.0426(7)$	$0.0448(7)$	$-0.0021(6)$	$0.0027(6)$	$-0.0046(5)$
C1	$0.0465(8)$	$0.0375(7)$	$0.0440(7)$	$0.0072(6)$	$-0.0033(6)$	$0.0001(6)$
C2	$0.0588(10)$	$0.0498(9)$	$0.0600(9)$	$-0.0024(7)$	$0.0056(8)$	$-0.0074(7)$
C3	$0.0765(13)$	$0.0686(11)$	$0.0679(12)$	$-0.0042(10)$	$0.0239(9)$	$-0.0067(9)$
C4	$0.0883(14)$	$0.0736(12)$	$0.0509(10)$	$0.0057(11)$	$0.0117(9)$	$-0.0129(9)$
C5	$0.0733(12)$	$0.0685(11)$	$0.0526(10)$	$-0.0033(9)$	$-0.0067(8)$	$-0.0134(9)$
C6	$0.0541(9)$	$0.0566(9)$	$0.0468(8)$	$-0.0028(7)$	$-0.0045(7)$	$-0.0024(7)$
C7	$0.0445(8)$	$0.0372(7)$	$0.0454(8)$	$0.0059(6)$	$-0.0057(6)$	$-0.0001(6)$
C8	$0.0568(10)$	$0.0632(10)$	$0.0476(9)$	$0.0011(8)$	$0.0064(7)$	$-0.0031(8)$
C9	$0.0826(15)$	$0.0997(17)$	$0.0893(15)$	$0.0017(13)$	$-0.0291(12)$	$0.0092(12)$

Geometric parameters (\AA, ${ }^{\circ}$)

S1-C8	1.8060 (17)	C5-C6	1.384 (2)
S1-C9	1.786 (2)	C2-H2	0.9300
O1-C7	1.2347 (17)	C3-H3	0.9300
N1-C7	1.3384 (19)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
N1-C8	1.4426 (19)	C5-H5	0.9300
N1-H1	0.8600	C6-H6	0.9300
C1-C6	1.386 (2)	C8-H8A	0.9700
C1-C7	1.496 (2)	C8-H8B	0.9700
C1-C2	1.386 (2)	C9-H9A	0.9600
C2-C3	1.381 (3)	C9-H9B	0.9600
C3-C4	1.374 (3)	C9-H9C	0.9600
C4-C5	1.369 (3)		
C8-S1-C9	100.62 (10)	C4-C3-H3	120.00
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8$	123.03 (14)	C3-C4-H4	120.00
C8-N1-H1	118.00	C5-C4-H4	120.00
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{H} 1$	118.00	C4-C5-H5	120.00
C2-C1-C7	118.13 (13)	C6-C5-H5	120.00
C2-C1-C6	119.07 (14)	C1-C6-H6	120.00
C6-C1-C7	122.78 (13)	C5-C6-H6	120.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	120.08 (16)	S1-C8-H8A	109.00
C2-C3-C4	120.47 (18)	S1-C8-H8B	109.00
C3-C4-C5	119.86 (18)	N1-C8-H8A	109.00
C4-C5-C6	120.31 (17)	N1-C8-H8B	109.00
C1-C6-C5	120.20 (16)	H8A-C8-H8B	108.00

supplementary materials

$\mathrm{O} 1-\mathrm{C} 7-\mathrm{N} 1$	$122.59(14)$	$\mathrm{S} 1-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~A}$	109.00
$\mathrm{O} 1-\mathrm{C} 7-\mathrm{C} 1$	$120.58(13)$	$\mathrm{S} 1-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.00
$\mathrm{~N} 1-\mathrm{C} 7-\mathrm{C} 1$	$116.83(12)$	$\mathrm{S} 1-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.00
$\mathrm{~S} 1-\mathrm{C} 8-\mathrm{N} 1$	$114.66(12)$	$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{~B}$	109.00
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	120.00	$\mathrm{H} 9 \mathrm{~A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.00
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	120.00	$\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$	109.00
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	120.00		
		$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$-23.5(2)$
$\mathrm{C} 9-\mathrm{S} 1-\mathrm{C} 8-\mathrm{N} 1$	$-73.54(15)$	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$157.05(14)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{O} 1$	$-3.9(2)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{O} 1$	$155.07(15)$
$\mathrm{C} 8-\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 1$	$175.55(13)$	$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 7-\mathrm{N} 1$	$-24.4(2)$
$\mathrm{C} 7-\mathrm{N} 1-\mathrm{C} 8-\mathrm{S} 1$	$105.09(16)$	$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.4(3)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$0.0(2)$	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$0.6(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$\mathrm{C} 3-\mathrm{C} 5-\mathrm{C} 6$	$-0.5(3)$	
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$0.0(2)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$0.2(3)$
$\mathrm{C} 7-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$			

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1^{\mathrm{i}}$	0.86	2.02	$2.8438(17)$	160
$\mathrm{C} 8 — \mathrm{H} 8 B \cdots 1^{\mathrm{ii}}$	0.97	2.53	$3.434(2)$	154

Symmetry codes: (i) $-x+1 / 2, y+1 / 2, z$; (ii) $x+1 / 2,-y+1 / 2,-z$.

